

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES: CHEMISTRY (P2)

NOVEMBER 2017

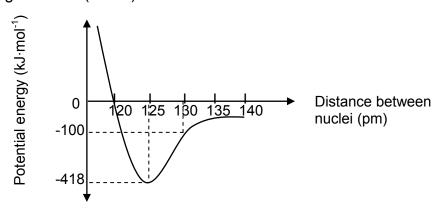
MARKS: 150

TIME: 3 hours

This question paper consists of 11 pages, 4 data sheets and 1 answer sheet.

INSTRUCTIONS AND INFORMATION

- 1. Write your name and class (for example 11A) in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK, except QUESTION 4.1, which must be answered on the attached ANSWER SHEET.
- 3. Hand in the ANSWER SHEET together with the ANSWER BOOK.
- 4. Start EACH question on a NEW page in the ANSWER BOOK.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- 7. You may use a non-programmable calculator.
- 8. You may use appropriate mathematical instruments.
- 9. You are advised to use the attached DATA SHEETS.
- 10. Show ALL formulae and substitutions in ALL calculations.
- 11. Round off your final numerical answers to a minimum of TWO decimal places.
- 12. Give brief motivations, discussions et cetera where required.
- 13. Write neatly and legibly.


QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 E.

- 1.1 Which ONE of the bonds between the atoms below has the highest polarity?
 - H-C Α
 - H Cl В
 - C H - O

$$D H - N$$
 (2)

- 1.2 Solid iodine sublimes easily. The intermolecular forces present in iodine are ...
 - Α London forces.
 - В hydrogen bonding.
 - С ion-dipole forces.
 - D dipole-dipole forces.
- 1.3 The graph below shows how the potential energy varies with distance between the nuclei of two nitrogen atoms when a double bond between the nitrogen atoms (N = N) is formed.

Choose from the table the bond length and bond energy for N = N.

	BOND LENGTH (pm)	BOND ENERGY (kJ·mol ⁻¹)
Α	120	0
В	125	518
С	125	418
D	130	-100

Copyright reserved Please turn over

(2)

(2)

(2)

(2)

- 1.4 According to Boyle's law, ...
 - A p $\alpha \frac{1}{V}$ if T is constant.
 - B $V \alpha T$ if p is constant.
 - C $V \alpha \frac{1}{T}$ if p is constant.
 - D p α V if n is constant.

1.5 One mole of any gas occupies the same volume at the same temperature and pressure.

This statement is known as ...

- A Charles's law.
- B Gay Lussac's law.
- C Avogadro's law.
- D the ideal gas LAW.
- One mole of a gas, SEALED in a container, has volume **V** at temperature **T** and pressure **p**. If the pressure is increased to **3p**, the ratio between the volume and temperature (V:T) is ...
 - A 1:1/3
 - B 3:1
 - C $\frac{1}{3}$: 3
 - D 1:3
- 1.7 The chemical equation that represents an endothermic reaction:
 - A $NH_4NO_3(s) + H_2O(l) \rightarrow NH_4^+(aq) + NO_3^-(aq) \Delta H > 0$
 - B $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ $\Delta H < 0$
 - C $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g) + heat$
 - D $H_2(g) + C\ell_2(g) \rightarrow 2HC\ell(g)$ $\Delta H = -131 \text{ kJ} \cdot \text{mol}^{-1}$ (2)

- 1.8 The CORRECT formula for nitric acid:
 - A H₂SO₄
 - B CH₃COOH
 - C NH₃

$$D HNO_3$$
 (2)

1.9 Consider the reaction below.

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

Which substance is the oxidising agent?

- A Zn
- B Cu²⁺
- C Zn²⁺

- 1.10 Which ONE of the reactions below will produce the salt sodium ethanoate (sodium acetate)?
 - A $HCl(s) + CH_3COOH(aq) \rightarrow$
 - B $CH_3COOH(aq) + H_2O(l) \rightarrow$
 - C $CH_3COOH(aq) + NaOH(aq) \rightarrow$
 - D $H_2CO_3(aq) + NaOH(aq) \rightarrow$ (2) [20]

QUESTION 2 (Start on a new page.)

Consider the following two reactions of methane (CH₄):

Reaction 1: $CH_4(g) + HC\ell(g) \rightarrow CH_3C\ell(g) + H_2(g)$

Reaction 2: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

- 2.1 Define the term *covalent bond*. (2)
- 2.2 Draw Lewis structures for:

$$2.2.1 \qquad CH_3C\ell \tag{2}$$

$$2.2.2 CO_2$$
 (2)

- 2.3 How many lone-pair electrons are on the central atom in the CO_2 molecule? (1)
- 2.4 Identify ONE of the substances in Reaction 2 that can form a dative covalent bond when reacting with an acid. (1)
- 2.5 Write down the shape of the:

$$2.5.1$$
 H_2O molecule (1)

$$2.5.2$$
 CO_2 molecule (1)

2.6 Although the molecules of CH_4 and $CH_3C\ell$ have the same shape, CH_4 is non-polar, while $CH_3C\ell$ is polar. Give a reason for the difference in molecular polarity.

(1) **[11]**

QUESTION 3 (Start on a new page.)

Consider the list of six substances with their formulae and boiling points in the table below.

NAME OF SUBSTANCE	FORMULA	BOILING POINT (°C)
Water	H ₂ O	100
Ethanol	CH ₃ CH ₂ OH	78
Bromine	Br ₂	58,8
lodine	l ₂	184,3
Ammonia	NH_3	-33,3
Phosphine	PH ₃	-87,7

- 3.1 Explain why ethanol is soluble in water. Refer to the relative strength of the intermolecular forces in ethanol and water. (3)
- Explain why the boiling point of iodine is higher than that of bromine. Refer to the intermolecular forces present in EACH substance in the explanation. (3)

- Explain why phosphine will evaporate faster than ammonia by referring to the 3.3 types of intermolecular forces present in EACH substance.
- (4)
- 3.4 Water, ethanol and bromine are all liquids at room temperature.

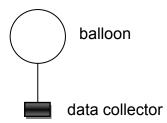
Which ONE will have the highest vapour pressure? (1)

3.5 Give a reason for the answer to QUESTION 3.4 by referring to the relative strength of the intermolecular forces and boiling points.

(2) [13]

(2)

QUESTION 4 (Start on a new page.)


In an experiment to investigate the relationship between pressure and temperature of an enclosed gas, 48 g of oxygen gas was sealed in a container. The results obtained are recorded in the table below.

PRESSURE (kPa)	TEMPERATURE (K)
155,8	250
187,0	300
218,1	350
249,3	400
280,5	450

- 4.1 Draw a graph of pressure versus temperature on the attached ANSWER SHEET. Extrapolate the graph so that it intersects the y-axis. (4)
- 4.2 What conclusion can be made from the final graph? (2)
- 4.3 Explain why it will not be possible to obtain accurate values at very low temperatures.
- Use the kinetic molecular theory to explain the effect of an increase in 4.4 temperature on the pressure of a gas. (4)
- 4.5 Under which conditions of temperature and pressure will a real gas act as an ideal gas? (2)
- Calculate the gradient of the graph. 4.6 (3)
- 4.7 Use the answer to QUESTION 4.6 to determine the volume of the container. (5) [22]

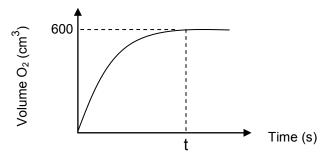
QUESTION 5 (Start on a new page.)

Weather balloons are sent into space to gather data. The balloons usually burst at a pressure of 27 640 Pa and a volume of 36,3 m³. The data collector then falls back to Earth.

The gas in a certain weather balloon has an initial volume of 12,6 m³ and pressure of 105 000 Pa at a temperature of 25 °C when it is released into space.

Calculate the:

- 5.1 Temperature of the gas, in °C, in the balloon when it bursts (4)
- 5.2 Initial amount of gas (in moles) in the balloon (4)
 [8]


QUESTION 6 (Start on a new page.)

6.1 The decomposition of hydrogen peroxide in the presence of a catalyst at standard pressure and room temperature is given by the unbalanced chemical equation below.

$$H_2O_2(aq) \rightarrow H_2O(\ell) + O_2(q)$$

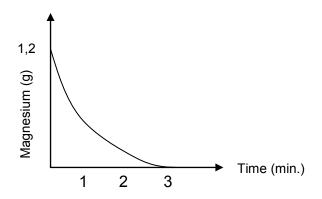
The oxygen gas is collected and the volume is recorded over a period of time. The reaction is completed at time **t**.

The results are plotted on a graph of volume O_2 versus time, as shown below.

Take the molar gas volume (V_m) as 24,45 dm³ at room temperature and standard pressure.

6.1.1 Balance the equation. (2)

6.1.2 How would a catalyst affect the reaction? (2)


6.1.3 Use the information on the graph to calculate the mass of hydrogen peroxide that decomposed. (6)

CAPS – Grade 11

In an experiment, a learner adds 500 cm³ hydrochloric acid (HCl), with a concentration of 0,36 mol·dm⁻³, to 1,2 g of magnesium in a test tube. She records the change in the mass of magnesium as the reaction proceeds at regular intervals. The balanced chemical equation for the reaction is:

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

The change in the mass of magnesium during the reaction is shown on the graph below.

6.2.1 Identify the limiting agent in this reaction. Give a reason for the answer.

6.2.2 Calculate the number of moles of **unreacted** hydrochloric acid in the test tube after 3 minutes.

(7) [**19**]

(2)

QUESTION 7 (Start on a new page.)

The equation for the combustion of butane gas is given below.

butane(g) +
$$13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$$
 $\Delta H < 0$

7.1 Define the term *activation energy*.

(2)

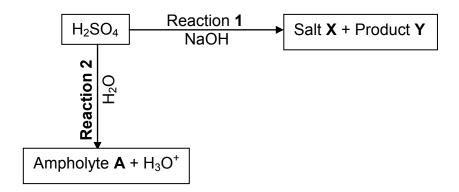
7.2 Is the combustion reaction of butane *exothermic* or *endothermic*? Give a reason for the answer.

(2)

7.3 Draw a sketch graph of potential energy versus course of reaction for the reaction above.

Clearly indicate the following on the graph:

- Activation energy
- Heat of reaction (ΔH)


Reactants and products (3)

7.4 Determine the empirical formula of butane gas if it consists of 82,76% carbon and 17,24% hydrogen.

(4) **[11]**

QUESTION 8 (Start on a new page.)

8.1 Two reactions of sulphuric acid are shown in the diagram below.

- 8.1.1 Define a Lowry-Brønsted base. (2)
- 8.1.2 Write down a balanced equation for Reaction 1. (3)
- 8.1.3 Write down the NAME of the salt represented by **X**. (2)
- 8.1.4 Write down the FORMULA of ampholyte **A**. (2)
- 8.1.5 Write down the formulae of the TWO conjugate acid-base pairs in Reaction **2**. (4)
- 8.2 A solution of sodium hydroxide (NaOH) is prepared by dissolving 6 g solid NaOH in 500 cm³ water.

This solution reacts completely with 10 g impure ammonium chloride (NH₄Cl) according to the equation below.

$$NaOH(aq) + NH_4Cl(s) \rightarrow NaCl(aq) + H_2O(l) + NH_3(aq)$$

- 8.2.1 Calculate the concentration of the NaOH solution. (4)
- 8.2.2 Calculate the percentage **impurities** in the NH₄Cl. (6) [23]

QUESTION 9 (Start on a new page.)

The reaction between dichromate ions $(Cr_2O_7^{-2})$ and iron(II) ions (Fe^{2+}) in an acidic medium is given below.

$$Cr_2O_7^{\text{--2}}(aq) + Fe^{2^+}(aq) + H^+(aq) \, \rightarrow \, Cr^{3^+}(aq) + Fe^{3^+}(aq) + H_2O(\ell)$$

- 9.1 Determine the oxidation number of CHROMIUM in $Cr_2O_7^{-2}(aq)$. (2)
- 9.2 Define *reduction* in terms of electron transfer. (2)
- 9.3 Write down the FORMULA of the substance that undergoes oxidation. Explain the answer in terms of oxidation numbers. (2)

CAPS - Grade 11

9.4 Write down the FORMULA of the oxidising agent. (2)

9.5 Write down the reduction half-reaction. (2)

9.6 Write down the net balanced ionic equation for the reaction, using the ion-electron method.

(3) **[13]**

QUESTION 10 (Start on a new page.)

Gold and iron are two of many minerals mined in South Africa. Iron is mined in open-cast mines, while gold is usually found in deep-shaft (underground) mines. During the process of refining, the following chemical reactions take place to extract the metal from the ore:

Gold is dissolved in a solution containing cyanide ions (CN⁻) to extract it from the ore. The balanced chemical equation for the reaction is:

$$4Au(s) + 8NaCN(aq) + 2H2O(l) + O2(g) \rightarrow 4NaAu(CN)2(aq) + NaOH(aq)$$

Iron(VI) oxide and carbon are heated in a furnace to extract iron from the ore. The balanced chemical equation for the reaction is:

$$2Fe_2O_3(s) + 3C(s) \rightarrow 4Fe(\ell) + 3CO_2(g)$$

10.1 State TWO advantages of open-cast mining when compared to deep-shaft (underground) mining. (2)

Consider the iron extraction reaction.

- 10.2 Is iron oxidised or reduced during the reaction? Give a reason for the answer. (2)
- 10.3 State TWO disadvantages of using carbon in this reaction. (2)

Consider the gold extraction reaction.

- 10.4 Give ONE reason why gold is present as an element in the ore. (2)
- 10.5 What role does oxygen gas (O₂) play in the reaction? (2) [10]

TOTAL: 150

CAPS – Grade 11

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE		
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹		
Molar gas constant Molêre gaskonstante	R	8,31 J·K ⁻¹ ·mol ⁻¹		
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa		
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹		
Standard temperature Standaardtemperatuur	Τθ	273 K		

TABLE 2: FORMULAE/TABEL 2: FORMULES

$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	pV=nRT
$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$n = \frac{V}{V_m}$	$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$

2 CAPS – Grade 11 DBE/November 2017

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE																				
	1		2		3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	(I)		(II)													(III)	(IV)	(V)	(VI)	(VII)	(VIII)
	1				Atomic number								2								
2,1	Н						K	(EY/SLE	EUTEL		Atoomg	etal									He
7	1									_		_									4
	3		4	1					4.		29					5	6	7	8	9	10
1,0	Li	7,5	Be						onegativ		ಲ್ Cu		nbol <i>nbool</i>			5,0 B	2,5 C	င္က N	3,5	6, F	Ne
	<u> </u>	_	9					Elektro	negatiw	iteit	63,5	311	IIDOOI			11	12	14	16	19	20
	<u>.</u> 11		12							L	<u> </u>					13	14	15	16	17	18
6,0	Na	4,2	Mg						Annro	vimato i	 relative	atomic	mace			λ. Υ ξ	² Si	L,2 P	S,5	္တိ င	Ar
0	23	_	24								latiewe					27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	0,	Ca	۲,	Sc	3,2	Ti	6, A	ç Cr	رن Mu		² Co	² Ni	င့် Cn		ې Ga			_		Kr
0	39	_	40	_	45	_	48	51	52	55	56	59	59	63,5		70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
8,0	Rb	1,0	Sr	1,2	Y	4,		Nb	² Mo					ို့ Ag		۲- In	[∞] Sn				Xe
0	86	_	88	_	89	_	91	92	96	- 10	101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
2,0		6,0	Ва		La	1,6	Hf	Ta	W	Re	Os	İr	Pt	Au	Hg		∞ Pp		% Po		Rn
0	133	0	137		139	_	179	181	184	186	190	192	195	197	201	204	207	209	7 1 0	2 Ar	1311
	87		88		89		113	101	104	100	130	132	133	137	201	204	201	203]]	
2,0		6,0	Ra		Ac				T	1	ı	1	ı	1		1	ı		1	1 1	
0		0	226		AC			58	59	60	61	62	63	64	65	66	67	68	69	70	71
						J		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238						•					

ncreasing oxidising ability/Toenemende oksiderende vermoë

⇒ 2F⁻

 \rightleftharpoons

 $2H_2O$

Half-reactions/Halfreaksies

 $F_2(g) + 2e^-$

 $H_2O_2 + 2H^+ + 2e^-$

 $Co^{3+} + e^{-}$

E[©](<u>V)</u>

+ 2,87

+ 1,81

+1,77

+ 1,51

+1,36

+ 1,33

+ 1.23

+1,23

+ 1,20

+ 1,07

+ 0,96

+ 0,85

+0,80

+0,80

+0,77

+ 0,68

+ 0,54

+0,52

+ 0,45

+ 0,40

+ 0,34

+0.17

+ 0.16

+0,15

+0.14

0,00

-0.06

-0,13

-0,14

-0,27

-0,28

-0,40

-0,41

-0,44

-0,74

-0,76

-0,83

-0,91

-1,18

-1,66

-2,36

-2,71

-2,87

-2,89

-2,90

- 2,92

-2,93

 $Mn^{2+} + 4H_2O$ $MnO_{4}^{-} + 8H^{+} + 5e^{-}$ \rightleftharpoons $C\ell_2(g) + 2e^ 2Cr^{3+} + 7H_2O$ $Cr_2O_7^{2-} + 14H^+ + 6e^ O_2(g) + 4H^+ + 4e^ 2H_2O$ \rightleftharpoons \Rightarrow Mn²⁺ + 2H₂O $MnO_2 + 4H^+ + 2e^-$ Pt²⁺ + 2e⁻ ⇒ Pt $Br_2(\ell) + 2e^- \rightleftharpoons$ 2Br \rightleftharpoons $NO(g) + 2H_2O$ $NO_3^- + 4H^+ + 3e^ Hg^{2+} + 2e^{-}$ Hg(l) \rightleftharpoons $Ag^{+} + e^{-}$ \rightleftharpoons Ag $NO_{3}^{-} + 2H^{+} + e^{-}$ $NO_2(g) + H_2O$ Fe²⁺ $Fe^{3+} + e^{-}$ \rightleftharpoons $O_2(g) + 2H^+ + 2e^ \rightleftharpoons$ H_2O_2 $I_2 + 2e^ \rightleftharpoons$ 2l⁻ Cu⁺ + e⁻ \rightleftharpoons Cu $SO_2 + 4H^+ + 4e^ \rightleftharpoons$ $S + 2H_2O$ $2H_2O + O_2 + 4e^ Cu^{2^+} + 2e^ \rightleftharpoons$ 40H⁻ \rightleftharpoons Cu $SO_4^{2-} + 4H^+ + 2e^ SO_2(g) + 2H_2O$ $Cu^{2+} + e^{-}$ \rightleftharpoons Cu⁺ Sn²⁺ Sn⁴⁺ + 2e⁻ \rightleftharpoons $S + 2H^{+} + 2e^{-}$ \rightleftharpoons $H_2S(g)$ 2H⁺ + 2e⁻ \rightleftharpoons H₂(g) $Fe^{3+} + 3e^{-}$ \rightleftharpoons Fe Pb²⁺ + 2e⁻ Sn²⁺ + 2e⁻ Ni²⁺ + 2e⁻ Co²⁺ + 2e⁻ Cd²⁺ + 2e⁻ \rightleftharpoons Pb \rightleftharpoons Sn \rightleftharpoons Ni \rightleftharpoons Co \rightleftharpoons Cd Cr³⁺ + e⁻ Cr²⁺ \rightleftharpoons Fe²⁺ + 2e⁻ \rightleftharpoons Fe Cr³⁺ + 3e⁻ \rightleftharpoons Cr $Zn^{2+} + 2e^{-}$ \rightleftharpoons Zn \rightleftharpoons $2H_{2}O + 2e^{-}$ $H_2(g) + 2OH^-$ Cr²⁺ + 2e⁻ \rightleftharpoons Cr Mn²⁺ + 2e⁻ \rightleftharpoons Mn $Al^{3+} + 3e^{-}$ Αł \rightleftharpoons $Mg^{2+} + 2e^{-}$ Mg Na⁺ + e⁻ \rightleftharpoons Na Ca²⁺ + 2e⁻ Ca Sr²⁺ + 2e⁻ Sr Ba²⁺ + 2e⁻ \rightleftharpoons Ва Cs⁺ + e⁻ \rightleftharpoons Cs \rightleftharpoons K⁺ + e⁻ Κ

Increasing reducing ability/Toenemende reduserende vermoë

Copyright reserved Please turn over

Li

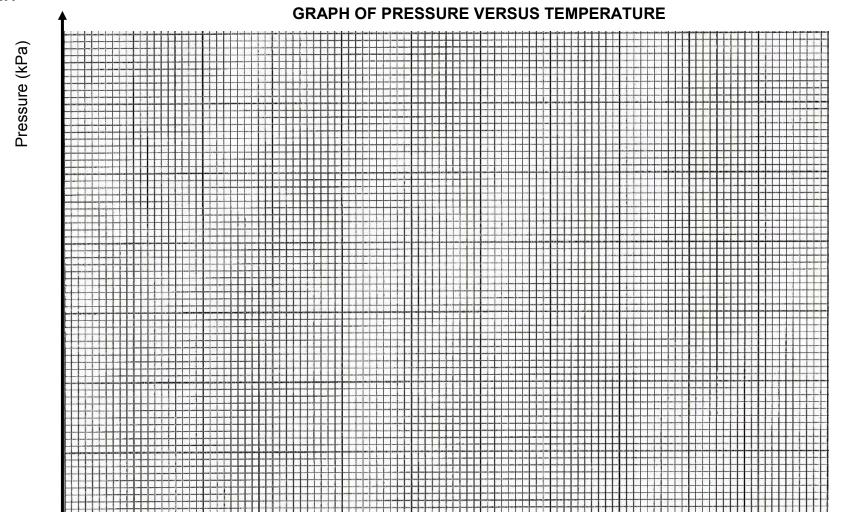
Li⁺ + e⁻

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions	E ^Œ (V)		
Li ⁺ + e ⁻	=	Li	- 3,05
K ⁺ + e ⁻	\rightleftharpoons	K	- 2,93
Cs⁺ + e⁻	\rightleftharpoons	Cs	- 2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	- 2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87
Na ⁺ + e ⁻	\rightleftharpoons	Na	- 2,71
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	- 2,36
$A\ell^{3+} + 3e^{-}$	=	Αℓ	- 1,66
Mn ²⁺ + 2e ⁻ Cr ²⁺ + 2e ⁻	<i>→</i>	Mn	- 1,18
	<i>→</i>	Cr	- 0,91
2H ₂ O + 2e ⁻ Zn ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH⁻	- 0,83
Cr ³⁺ + 3e ⁻	≓	Zn Cr	- 0,76 - 0,74
Fe ²⁺ + 2e ⁻	7	Fe	- 0,74 - 0,44
Cr ³⁺ + e ⁻	7	Cr ²⁺	- 0,44 - 0,41
Cd ²⁺ + 2e ⁻	+	Cd	- 0,41 - 0,40
Co ²⁺ + 2e ⁻	+	Co	- 0, 4 0 - 0,28
Ni ²⁺ + 2e ⁻	+	Ni	- 0,27
Sn ²⁺ + 2e ⁻	<u>`</u>	Sn	- 0,14
Pb ²⁺ + 2e ⁻	;	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(q)$	+ 0,14
Sn ⁴⁺ + 2e⁻	\rightleftharpoons	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	4OH⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H2O	+ 0,45
Cu ⁺ + e ⁻	\rightleftharpoons	Cu	+ 0,52
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻ NO ₃ + 2H ⁺ + e ⁻	+	Fe ²⁺	+ 0,77 + 0,80
	≓	$NO_2(g) + H_2O$	
Ag ⁺ + e ⁻	<i>→</i>	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^{-\ell}$	=	2Br ⁻	+ 1,07
$P_{t}^{2^{+'}} + 2 e^{-}$ MnO ₂ + 4H ⁺ + 2e ⁻		Pt Mn ²⁺ + 2H ₂ O	+ 1,20
O_2 + 4H + 2e O_2 (g) + 4H ⁺ + 4e ⁻	 	2H ₂ O	+ 1,23 + 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	+	200 200 201 201 201	+ 1,23
Cl_2O_7 $Cl_2(g) + 2e^-$	-	2Cl ⁻	+ 1,36
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	` ≓	$Mn^{2+} + 4H_2O$	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$	` ≓	2H ₂ O	+1,77
Co ³⁺ + e ⁻		Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻		2F ⁻	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë


ANSWER SHEET

Hand in this ANSWER SHEET together with the ANSWER BOOK.

NAME: ____

CLASS:____

QUESTION 4.1

Copyright reserved Temperature (K)